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(57) ABSTRACT

The present invention relates to a method for automatic
adjustment of signal processing parameters in ahearing aid. It
is based on an interactive estimation process that incorporates
user feedback. The method is capable of incorporating user
perception of sound reproduction, such as sound quality over
time. The user may fine-tune the hearing aid using a volume-
control wheel or a push-button on the hearing aid housing,
which is linked to an adaptive parameter that is a projection of
a relevant parameter space. For example, this new parameter
could control simple volume, the number of active micro-
phones, or a complex trade-off between noise reduction and
signal distortion. By turning the “personalization wheel” in
accordance with user preferences and absorbing these pref-
erences in the model resident in the hearing aid, it is possible
to absorb user preferences while the user wears the hearing
aid device in the field.
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LEARNING CONTROL OF HEARING AID
PARAMETER SETTINGS

The present invention relates to a new method for auto-
matic adjustment of signal processing parameters in a hearing
aid. It is based on an interactive estimation process that incor-
porates—possibly inconsistent—user feedback.

In a potential annual market of 30 million hearing aids,
only 5.5 million instruments are sold. Moreover, one out of
five buyers does not wear the hearing aid(s). Apparently,
despite rapid advancements in Digital Signal Processor
(DSP) technology, user satisfaction rates remain poor for
modern industrial hearing aids.

Over the past decade, hearing aid manufacturers have
focused on incorporating very advanced DSP technology and
algorithms in their hearing aids. As a result, current DSP
algorithms for industrial hearing aids feature a few hundred
tuning parameters. In order to reduce the complexity of fitting
the hearing aid to a specific user, manufacturers leave only a
few tuning parameters adjustable and fix the rest to ‘reason-
able’ values. Oftentimes, this results in a very sophisticated
DSP algorithm that does not satisfactorily match the specific
hearing loss characteristics and perceptual preferences of the
user.

It is an object of the present invention to provide a method
for automatic adjustment of signal processing parameters in a
hearing aid that is capable of incorporating user perception of
sound reproduction, such as sound quality over time.

According to the present invention, the above-mentioned
and other objects are fulfilled in a hearing aid with a signal
processor for signal processing in accordance with selected
values of a set of parameters 0, by a method of automatic
adjustment of a set z of the signal processing parameters 9,
using a set of learning parameters 6 of the signal processing
parameters 6, the method comprising the steps of:

extracting signal features u of a signal in the hearing aid,

recording a measure r of an adjustment e made by the user
of the hearing aid,

modifying z by the equation:

z=ub+r

and
absorbing the user adjustment e in 6 by the equation:

0y~ (wr)+0p

wherein

0, 1s the new values of the learning parameter set 6,

05 is the previous values of the learning parameter set 6,
and

F 1is a function of the signal features u and the recorded
adjustment measure r.

F may be computed by a normalized Least Means
Squares algorithm, a recursive Least Means Squares algo-
rithm, a Kalman algorithm, a Kalman smoothing algorithm,
or any other algorithm suitable for absorbing user prefer-
ences.

In one embodiment, the signal features constitutes a matrix
U, such as a vector u.

It should be noted that the equation z=uf+r, underlining
indicates a set of variables, such as a multi-dimensional vari-
able, for example a two-dimensional or a one-dimensional
variable. The equation constitutes a model, preferably a linear
model, mapping acoustic features and user correction onto
signal processing parameters.
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In a preferred embodiment of the invention, z is a one-
dimensional variable, the signal features constitute a vectoru
and the measure r of auser adjustment e is absorbed in 6 by the
equation:

H Tr

Oy =———u
N a2 +ulu

+8p

wherein [ is the step size, and subsequently a new recorded
measure r,, of the user adjustment e is calculated by the equa-
tion: -

— T
Irpi Opte

wherein 1, is the previous recorded measure. Further, a new
value o, of the user inconsistency estimator o is calculated
by the equation:

oy’ =0p"+y|r-0p’

wherein o is the previous value of the user inconsistency
estimator, and

y is a constant.

z may be a variable g and r may be a variable r, so that

g ul0+r

Advantageously, the method in a hearing aid according to
the present invention has a capability of absorbing user pref-
erences changing over time and/or changes in typical sound
environments experienced by the user. The personalization of
the hearing aid is performed during normal use of the hearing
aid. These advantages are obtained according to the invention
by absorbing user adjustments of the hearing aid in the param-
eters of the hearing aid processing. Over time, this approach
leads to fewer user manipulations during periods of unchang-
ing user preferences. Further, the method in the hearing aid
according to the invention is robust to inconsistent user
behaviour.

According to the present invention, user preferences for
algorithm parameters are elicited during normal use in a way
that is consistent and coherent and in accordance with theory
for reasoning under uncertainty.

According to the present invention, the hearing aid is
capable of learning a complex relationship between desired
adjustments of signal processing parameters and corrective
user adjustments that are a personal, time-varying, nonlinear,
and/or stochastic.

A hearing aid algorithm F(*) is a recipe for processing an
input signal x(t) into an output signal y(t)=F(x(t);0), where 0
€ 0 is a vector of tuning parameters such as compression
ratio’s, attack and release times, filter cut-off frequencies,
noise reduction gains etc. The set of all interesting values for
0 constitutes the parameter space 6 and the set of all ‘reach-
able’ algorithms constitutes an algorithm library F(0). After a
hearing aid algorithm library F(0) has been developed, the
next challenging step is to find a parameter vector value 6* €
0 that maximizes user satisfaction.

The method may for example be employed in automatic
control of the volume setting, maximal noise reduction, set-
tings relating to the sound environment, etc.

Fitting is the final stage of parameter estimation, usually
carried out in a hearing clinic or dispenser’s office, where the
hearing aid parameters are adjusted to match a specific user.
Typically, according to the prior art the audiologist measures
the user profile (e.g. audiogram), performs a few listening
tests with the user and adjusts some of the tuning parameters
(e.g. compression ratio’s) accordingly. However, according
to the present invention, the hearing aid is subsequently sub-
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jected to an incremental adjustment of signal processor
parameters during its normal use that lowers the requirement
for manual adjustments.

After a user has left the dispenser’s office, the user may
fine-tune the hearing aid using a volume-control wheel or a
push-button on the hearing aid with a model that learns from
user feedback inside the hearing aid. The personalization
process continues during normal use. The traditional volume
control wheel may be linked to a new adaptive parameter that
is a projection of a relevant parameter space. For example,
this new parameter, in the following denoted the personaliza-
tion parameter, could control (1) simple volume, (2) the num-
ber of active microphones or (3) a complex trade-off between
noise reduction and signal distortion. By turning the ‘person-
alization wheel’ to preferred settings and absorbing these
preferences in the model resident in the hearing aid, it is
possible to keep learning and fine-tuning while a user wears
the hearing aid device in the field.

The output of an environment classifier may be included in
the user adjustments for provision of a method according to
the present invention that is capable of distinguishing differ-
ent user preferences caused by different sound environments.
Hereby, signal processing parameters may automatically be
adjusted in accordance with the user’s perception of the best
possible parameter setting for the actual sound environment.

Thus, in one embodiment, the method further comprises
the step of classifying the signal features u into a set of
predetermined signal classes with respective classification
signal features u*, and substitute signal features u with the
classification signal features u* of the respective class.

The above and other features and advantages of the present
invention will become more apparent to those of ordinary
skill in the art by describing in detail exemplary embodiments
thereof with reference to the attached drawings in which:

FIG. 1 shows a simplified block diagram of a digital hear-
ing aid according to the present invention,

FIG. 2 is a flow diagram of a learning control unit accord-
ing to the present invention,

FIG. 3 is aplot of variables as a function of user adjustment
for a user with a single preference,

FIG. 4 is a plot of variables as a function of user adjustment
for a user with various preferences,

FIG. 5is aplot of variables as a function of user adjustment
for a user with various preferences without learning,

FIG. 6 illustrates an environment classifier with seven envi-
ronmental states,

FIG. 7 illustrates an LVC algorithm flow diagram,

FIG. 8 illustrates an example of stored LVC data,

FIG. 9 illustrates an example of adjustments according to
an LVC algorithm according to the invention, and

FIG. 10 is a plot of an adjustment path of a combination of
parameters.

The present invention will now be described more fully
hereinafter with reference to the accompanying drawings, in
which exemplary embodiments of the invention are shown.

The invention may, however, be embodied in different
forms and should not be construed as limited to the embodi-
ments set forth herein. Rather, these embodiments are pro-
vided so that this disclosure will be thorough and complete,
and will fully convey the scope of the invention to those
skilled in the art.

FIG. 1 shows a simplified block diagram of a digital hear-
ing aid according to the present invention. The hearing aid 1
comprises one or more sound receivers 2, e.g. two micro-
phones 2a and a telecoil 24. The analogue signals for the
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4

microphones are coupled to an analogue-digital converter
circuit 3, which contains an analogue-digital converter 4 for
each of the microphones.

The digital signal outputs from the analogue-digital con-
verters 4 are coupled to a common data line 5, which leads the
signals to a digital signal processor (DSP) 6. The DSP is
programmed to perform the necessary signal processing
operations of digital signals to compensate hearing loss in
accordance with the needs of the user. The DSP is further
programmed for automatic adjustment of signal processing
parameters in accordance with the present invention.

The output signal is then fed to a digital-analogue converter
12, from which analogue output signals are fed to a sound
transducer 13, such as a miniature loudspeaker.

In addition, externally in relation to the DSP 6, the hearing
aid contains a storage unit 14, which in the example shown is
an EEPROM (electronically erasable programmable read-
only memory). This external memory 14, which is connected
to a common serial data bus 17, can be provided via an
interface 15 with programmes, data, parameters etc. entered
from a PC 16, for example, when a new hearing aid is allotted
to a specific user, where the hearing aid is adjusted for pre-
cisely this user, or when a user has his hearing aid updated
and/or re-adjusted to the user’s actual hearing loss, e.g. by an
audiologist.

The DSP 6 contains a central processor (CPU) 7 and a
number of internal storage units 8-11, these storage units
containing data and programmes, which are presently being
executed in the DSP circuit 6. The DSP 6 contains a pro-
gramme-ROM (read-only memory) 8, a data-ROM 9, a pro-
gramme-RAM (random access memory) 10 and a data-RAM
11. The two first-mentioned contain programmes and data
which constitute permanent elements in the circuit, while the
two last-mentioned contain programmes and data which can
be changed or overwritten.

Typically, the external EEPROM 14 is considerably larger,
e.g. 4-8times larger, than the internal RAM, which means that
certain data and programmes can be stored in the EEPROM
so that they can be read into the internal RAMs for execution
as required. Later, these special data and programmes may be
overwritten by the normal operational data and working pro-
grammes. The external EEPROM can thus contain a series of
programmes, which are used only in special cases, such as
€.g. start-up programmes.

FIG. 2 schematically illustrates the operation of a learning
volume control algorithm according to the present invention.
The illustrated hearing aid circuit includes an automatic vol-
ume control circuit that operates to adjust the amplitude of a
signal x(t) by a gain g(t) to output y(t)=g(t) x(t). An automatic
volume control (AVC) module controls the gain g,. The AVC
unit takes as input u,, which holds a vector of relevant features
with respect to the desired gain for signal x,. For instance, u,
could hold short-term RMS and SNR estimates of x,. In a
linear AVC, the desired (log-domain) gain G, is a linear func-
tion (with saturation) of the input features, i.e.

—, I
G,=u, 041,

M

where the offset r, is read from a volume-control (VC) regis-
ter. r, is a measure of the user adjustment. Sometimes, during
operation of the device, the user is not satisfied with the
volume of the received signal y,. He is provided with the
opportunity to manipulate the gain of the received signal by
changing the contents of the VC register through turning a
volume control wheel. e, represents the accumulated change
in the VC register from t-1 to t as a result of user manipula-
tion. The learning goal is to slowly absorb the regular patterns
in the VC register into the AVC model parameters 6. Ulti-
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mately, the process will lead to a reduced number of user
manipulations. An additive learning process is utilized,

0 2
0, =0,,+0, @

where the amount of parameter drift 8 . 1s determined by the
selected learning algorithms, such as LMS or Kalman filter-
ing.

A parameter update is performed only when knowledge
about the user’s preferences is available. While the VC wheel
is not being manipulated during normal operation of the
device, the user may be content with the delivered volume, but
this is uncertain. After all, the user may not be wearing the
device. However, when the user starts turning the VC wheel,
it is assumed that he is not content at that moment. The
beginning of a VC manipulation phase is denoted the dissent
moment. While the user manipulates the VC wheel, he is
likely still searching for a better gain. A next learning moment
occurs right after the user has stopped changing the VC wheel
position. At this time, it is assumed that he has found a
satisfying gain; we’ll call this the consent moment. Dissent
and consent moments identify situations for collecting nega-
tive and positive teaching data, respectively. Assume that the
kth consent moment is detected at t=t,. Since the updates only
take place at times t,, it is useful to define a new time series as

0 0
0/( = Z 0/(5([—[/()
t

and similar definitions for converting r, to r, etc. The new
sequence, indexed by k rather than t, only selects samples at
consent moments from the original time series. Note that by
considering only instances of explicit consent, there is no
need for an internal clock in the system. In order to complete

the algorithm, the drift 8 . heeds to be specified.

Two update algorithms according to the present invention
is further described below.

Learning by the nL. MS Algorithm:

In the nL.MS algorithm, the learning update Eq. (2) should
not affect the actual gain G, leading to compensation by
subtracting an amount u,” 6, from the VC register. The VC
register contents are thus described by

— T
Fa1 =V et+et+l

3

wherein t is a time of consent and t+1 is the next time of
consent and that only at a time of consent, user adjustment e,

and discount u” 8 , are applied. Apart from specifying the
parameter drift A, Eqs. (1), (2), and (3) describe the evolution
of the Learning Volume Control (LVC) algorithm. It is
assumed that

wto=[Luy, ..., 4, 1[06:01, - - -

in other words, 0, is provided to absorb the preferred mean
VC offset. It is then reasonable to assume a cost criterion
€[r;2], to be minimized with respect to 6. A normalized LMS-
based learning volume control is effectively implemented
using the following update equation

30

35
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60

0 u r )
0/( = 77.14,( Fr
T2+ Uty

where | is a learning rate and o2 is an estimate of €[r;2]. In
practice, it is helpful to select a separate learning rate for
adaption of the offset parameter 6. €[r;2] is tracked by a leaky
integrator,

2. 2 2 2
0} =01 HYX[1 =011 7]

®

where v sets the effective window of the integrator. Note that
the LMS-based updating implicitly assumes that ‘adjustment
errors’ are Gaussian distributed. The variable 0,2 essentially
tracks the user inconsistency. As a consequence, for enduring
large values of r,2, the parameter drift will be small, which
means that the user’s preferences are not absorbed. This is a
desired feature of the LVC system. It is possible to replace o,
in Eq. (4) by alternative measures of user inconsistency. Alter-
natively, in the next section the Kalman filter is introduced,
which is also capable of absorbing inconsistent user
responses.

Learning with a Kalman Filter:

In this model, the user is assumed to be a ‘linear user’ who
experiences a certain threshold A on the deviation from his
preferred amplification level (vector) a before he responds.
Furthermore, a feature vectoru, is to be extracted, and the user
prefers the processed sound: G, “"**=au,. The ‘internal pref-
erence vector’a is supposed to generalise to different auditory
scenes. This requires that feature vector u, contains relevant
features that describe the acoustic input well.

The user will express his preference for this sound level by
adjusting the volume wheel, i.e. by feeding back a correction
factor that is ideally noiseless (&,) and adding it to the register
r,. In reality, the actual user correction e, will be noisy,
I,=t, ,&,=I,_+&.+v,, where v, is a noise term. In other
words, the current register value at the current consent
moment equals the register value at the previous explicit
consent moment plus the accumulated corrections for the
current explicit consent moment. The accumulated noise v, is
supposed to be Gaussian noise. The user is assumed to expe-
riences an ‘annoyance threshold’ & such that |8,|<€¢—e=0.

When a user changes his preferences, he will probably
induce noisy corrections to the volume wheel. In the nL MS
algorithm, these increased corrections would contribute to the
estimated variance 0;2, hence lead to a decrease in the esti-
mated learning rate.

However, the apparent noise in the correction could also be
caused by changed preferences. It is desirable to increase the
learning rate with the estimated state noise variance in order
to respond quickly to a changed preference pattern. Allowing
the parameter vector that is to be estimated to ‘drift” with
some (state) noise, leads to the following state space formu-
lation of the LVC problem:

811 =6+, Vi-N(0,8°T)

G,=1; 70,47, r~nongaussian

In W. D. Penny, “Signal processing course”, Tech. Rep.,
University College London, 2000, a comparison is made
between nLMS and Kalman filter based updating. Both algo-
rithms give rise to an effective update rule

©

A A 0 A
Oy =01 +0=0_1 + el ry
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for the mean 6, of the parameter vector and additionally, the
Kalman filter also updates its variance %,. The difference
between the algorithms is in the 1, term. In the Kalman LVC
it is:

M

where 11, is now a learning rate matrix. For the Kalman algo-
rithm, the learning rate is proportional to the state noise v,
through the predicted covariance of state variable 0,
e 1=2,,+8°1. The state noise will become high when a
transition to a new dynamic regime is experienced. Further-
more, it scales inversely with observation noise oy, i.e. the
uncertainty in the user response. The more consistent the user
operates the volume control, the smaller the estimated obser-
vation noise, and the larger the learning rate. The nLMS
learning rate only scales (inversely) with the user uncertainty.
On-line estimates of the noise variances 3, o2 are made with
the Jazwinski method (cf. W. D. Penny, “Signal processing
course”, Tech. Rep., University College London, 2000, 2).
Further, note that the observation noise is non-gaussian in
both nLMS and the state space formulation of the LVC.
Especially the latter, which is solved with a recursive (Kal-
man filter) algorithm, is sensitive to model mismatch. This
can be solved by making an explicit distinction between the
‘structural part’ €, in the correction and the actual noisy
adjustment noise e,=¢,+v,. Under some extra assumptions on
the user this may be written as an extended state space model,
for which again the Kalman update equations can be used.

_ T, 2y-1
Wi Z e 1 (Uit +OF)

EXPERIMENTS

An evaluation of the Kalman filter LV C was performed to
study its behaviour with inconsistent users and users with
changing preferences. A music excerpt that was pre-pro-
cessed to give log-RMS feature vectors was used as input.
This was fed to a simulated user who had a preference func-
tion G, #"*=au1,, and whose noisy corrections were fed back
to the LVC as corrections.

Single Mode User—Continuous Adjustment

First, it is assumed that the user has a fixed preferred 6 level
(“user mode: amplification”) of three. It is also assumed that
the user adjusts continuously and according to the assump-
tions above, i.e. heis always in ‘explicit dissent’ mode, imply-
ing &€,=0. The user inconsistency changes throughout the
simulation (see FIG. 2, the ‘User mode: inconsistency sub-
graph’), where higher values of the inconsistency in a certain
time segment denote more ‘adjustment noise’ in turning the
virtual volume control. Also note in FIG. 2 the ‘alpha(t)’
subgraph, the roughly inverse scaling behaviour of implied
learning rate o, with user inconsistency (which is exactly
what is desired).

Multiple Mode User—Thresholded Adjustment

Below, the user has changing amplification level prefer-
ences and also experiences a threshold on his annoyance
before he will do the adjustment, i.e. &>0. Note that when
adjustments are absent (i.e. when the AVC value comes close
to the desired amplification level value a), the noise is also
absent (see FIG. 4, bottom ‘user-applied (noisy) volume con-
trol actions’ subgraph). The results indicate a better tracking
of'user preference and much smaller sensitivity to user incon-
sistencies when the Kalman-based LVC is used compared to
‘no learning’. This can be seen e.g. by comparing the upper-
most rows of FIGS. 3 and 4: the LVC ‘output’ is much more
smooth than the ‘no learning’ output, indicating less sensitiv-
ity to user inconsistencies. Please note that in an actual real-
time implementation the filtered-out user noise is again added
manually in the LVC, in order to ensure full control of the
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user. Furthermore, FIGS. 3 and 4 show (compare the gener-
ated ‘user-applied (noisy) volume control actions’ subgraphs
in both cases) that using the LVC results in fewer adjustments
made by the user, which is desired.

nl.MS Versus Kalman Filter Implementation:

Both LVC algorithms have been implemented on a real-
time platform. Experiments showed that the nL MS algorithm
can be made to work nearly as good as the Kalman algo-
rithms. Hyperparameters can be set in order to have the
desired robust behaviour. However, adaptation to changing
user preferences is slower (due to the absence of state noise,
fast switches cannot be made) and generalisation to multidi-
mensional features is troublesome. Itis expected that multiple
features will be necessary to describe the relevant acoustic
scenes adequately. Otherwise, a lot of variability is left unex-
plained, which can only be remedied with an explicit ‘envi-
ronmental classifier’ in place. However, by coding all the
relevant contextual information in the feature vector, the LVC
could ‘steer itself” in different acoustic scenes.

In the LVC example above, the control map was a simple
linear map v(t)=0u(t), but in general the control map may be
non-linear. As an example of the latter, the kernel v(t)=2,0,x
P,(u(t)), where 1,(¢) are support vectors, could form an
appropriate part of a nonlinear learning machine. v(t) may
also be generated by a dynamic model, e.g. v(t) may be the
output of a Kalman filter or a hidden Markov model.

Further, the method may be applied for adjustment of noise
suppression (PNR) minimal gain, of adaptation rates of feed-
back loops, of compression attack and release times, etc.

In general, any parameterizable map between (vector)
input u and (scalar) output v can be learned through the
volume wheel, if the ‘explicit consent” moments can be iden-
tified. Moreover, sophisticated learning algorithms based on
mutual information between inputs and targets are capable to
select or discard components from the feature vector u in an
online manner.

In another embodiment, a learned volume gain (LVC-gain)
process incorporates information on the environment by clas-
sification of the environment in seven defined acoustical envi-
ronments. Furthermore, the LVC-gain is dependent on the
learned confidence level. The user can overrule the automated
gain adjustment at any time by the volume wheel. Ideally, a
consistent user will be less triggered over time to adjust the
volume wheel due to the automated volume gain steering.
Again, the purpose of the Learning Volume Control (LVC)
process is to learn the user preferred volume control setting in
a specific acoustical environment.

The environmental classifier (EVC) provides a state of the
acoustical environment based on a speech- and noise prob-
ability estimator and the broadband input power level. Seven
environmental states have been defined as shown in FIG. 6.
The EVC output will always indicate one of these states. The
assumption is made for the LVC algorithm that the volume
control usage is based on the acoustical condition of the
hearing impaired user.

The LVC process can be explained briefly using FIG. 7.
The LVC process can be split into two parts. In FIG. 7, this is
indicated with numbers (1) and (2).

The first process steps indicated by (1) in FIG. 7 include a
volume wheel change by the hearing impaired user. When the
VC is set to a satisfying position and unaltered e.g. for 15 or
30 seconds, it is assumed that the user is content with the VC
setting. At that point in time the state of the EVC is retrieved
(because it is assumed that the state of acoustical environment
played a role in the user decision for changing the volume
wheel). Based on the EVC-state, the volume wheel setting
and some history of volume wheel usage, the LVC parameters
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(Confidence & [VC-gain) are updated and stored in
EEPROM. In that sense, the stored LVC parameters repre-
sents the ‘learned’ user profile. An example of stored LVC
data is shown in FIG. 8.

The second process steps indicated by (2) in FIG. 7, rep-
resent the runtime signal processing routine. When the hear-
ing aid is booted (startup), the learned LVC-Gain is loaded
and applied as Volume Gain. The LVC-Gain is steered by the
EVC-state and the overall Volume Gain is an addition to the
LVC-Gain and the normal Volume Control Gain in accor-
dance with the equation:

Grot(t) = Gext + Gieleve, 1)

Volume wheel I (leamed)gain

per environment

The LVC Gain is smoothed over time t so that a sudden
EVC state change does not give rise to a sudden LVC-Gain
jump (because this could be perceived as annoying by the
user).

In FIG. 9, the LVC process is explained by means of an
example. In this example, a female user turns on the hearing
aid at a certain point during the day. For example, she puts in
the hearing aid in the morning in her Quiet room. She walks
towards the living room where her husband starts talking
about something. Because she needs some volume increase
she turns the volume wheel up. The environmental classifier
was in state Quiet when she was in her room and the state
changed to Speech<65 dB when her husband started talking.
Itis assumed that this scenario takes place for four successive
days. FIG. 9 illustrates that the hearing aid user adjusts the
volume wheel only in the first three days; however the amount
of desired extra dB’s is less each day because the LVC algo-
rithm also provides gain based on the stored LVC data. The
LVC-Gain smoothing is represented as a slowly rising gain
increase. The confidence parameter (per environment) is
updated each time the VC has been changed. In this example,
the confidence update operates with a fixed update step, and
in this example the update step is set to 0.25.

Further Embodiments

In one exemplary embodiment, the method is utilized to
adjust parameters of a comfort control algorithm in which a
combination of parameters may be adjusted by the user, e.g.
using a single push button, volume wheel or slider. In this
way, a plurality of parameters may be adjusted over time
incorporating user feedback. The user adjustment is utilized
to interpolate between two extreme settings of (an)
algorithm(s), e.g. one setting that is very comfortable (but
unintelligible), and one that is very intelligible (but uncom-
fortable). The typical settings of the ‘extremes’ for a particu-
lar patient (i.e. the settings for ‘intelligible’ and ‘comfortable’
that are suitable for a particular person in a particular situa-
tion) are assumed to be known, or can perhaps be learned as
well. The user ‘walks over the path between the end points’ by
using volume wheel or slider in order to set his preferred
trade-off in a certain environmental condition. This is sche-
matically illustrated in FIG. 10. The Learning Comfort Con-
trol will learn the user-preferred trade-off point (for example
depending on then environment) and apply consecutively.

In one exemplary embodiment, the method is utilized to
adjust parameters of a tinnitus masker.

Some tinnitus masking (TM) algorithms appear to work
sometimes for some people. This uncertainty about its effec-
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tiveness, even after the fitting session, makes a TM algorithm
suitable for further training though on-line personalization. A
patient who suffers from tinnitus is instructed during the
fitting session that the hearing aid’s user control (volume
wheel, push button or remote control unit) is actually linked to
(parameters of) his tinnitus masking algorithm. The patient is
encouraged to adjust the user control at any time to more
pleasant settings. An on-line learning algorithm, e.g. the algo-
rithms that are proposed for LVC, could then absorb consis-
tent user adjustment patterns in an automated “TM control
algorithm’, e.g. could learn to turn on the TM algorithm in
quiet and turn off the TM algorithm in a noisy environment.
Patient preference feedback is hence used to tune the param-
eters for a personalized tinnitus masking algorithm.

The person skilled in the art will recognize that any param-
eter setting of the hearing aid may be adjusted utilizing the
method according to the present invention, such as
parameter(s) for a beam width algorithm, parameter(s) for a
AGC (gains, compression ratios, time constants) algorithm,
settings of a program button, etc.

In one embodiment of the invention, the user may indicate
dissent using the user-interface, e.g. by actuation of a certain
button, a so-called dissent button, e.g. on the hearing aid
housing or a remote control.

This is a generic interface for personalizing any set of
hearing aid parameters. It can therefore be tied to any of the
‘on-line learning’ embodiments. It is a very intuitive interface
from a user point of view, since the user expresses his dis-
comfort with a certain setting by pushing the dissent button, in
effect making the statement: “I don’t like this, try something
better”. However, the user does not say what the user would
like to hear instead. Therefore, this is a much more challeng-
ing interface from an learning point of view. Compare e.g. the
LVC, where the user expresses his consent with a certain
setting (after having turned the volume wheel to a new desir-
able position), so the learning algorithm can use this new
setting as a ‘target setting’ or a ‘positive example’ to train on.
Utilizing another algorithm called the Learning Dissent But-
ton LDB, the user only provides ‘negative examples’ so there
is no information about the direction in which the parameters
should be changed to achieve a (more) favourable setting.

As an example, the user walks around, and expresses dis-
sent with a certain setting in a certain situation a couple of
times. From this ‘no go area’ in the space of settings, the LDB
algorithm estimates a better setting that is applied instead.
This could again (e.g. in certain acoustic environments) be
‘voted against’ by the user by pushing the dissent button,
leading to a further refinement of the ‘area of acceptable
settings’. Many other ways to learn from a dissent button
could also be invented, e.g. by toggling through a predefined
set of supposedly useful but different settings.

The invention claimed is:

1. In a hearing aid with a signal processor for signal pro-
cessing in accordance with a set z of signal processing param-
eters ©, a method of operating the hearing aid based on an
automatic adjustment of the set z of the signal processing
parameters ®, and a set of learning parameters 0 of the signal
processing parameters ©, comprising:

obtaining signal features u of a signal in the hearing aid,

recording a measure r of an adjustment made by a user of

the hearing aid,

modifying the set z by the equation: z=uB+r, wherein the

act of moditying is performed using the signal proces-
sor, wherein the set of learning parameters 0 is deter-
mined using the measure r of the adjustment based on the
equation: 8,~F (u, r)+6; and
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using the modified set z of the signal processing
parameters © in the hearing aid;

wherein
0, are new values of the learning parameters 0,
0, are previous values of the learning parameters 0, and
F is a function of the signal features u and the measure r.

2. The method according to claim 1, wherein F is com-
puted by a normalized Least Mean Squares algorithm.

3. The method according to claim 1, wherein F is com-
puted by a recursive Least Squares algorithm.

4. The method according to claim 1, wherein F is com-
puted by a Kalman filtering algorithm.

5. The method according to claim 1, wherein is F is com-
puted by a Kalman smoothing algorithm.

6. The method according to claim 2, wherein the measure r
of the user adjustment is a one-dimensional variable that is
associated with 0 by the equation:

6y =

wherein [ is a step size.

7. The method according to claim 6, further comprising
calculating a new recorded measure r,,of the user adjustment
by the equation:

ry=rp—uOpte

wherein 1, is a previous recorded measure, and e is the user
adjustment.

8. The method according to claim 7, further comprising
calculating a new value o, of a user inconsistency estimator
by the equation:

oy =0p’+y|r-0p"

wherein 0, is a previous value of the user inconsistency
estimator, and vy is a constant.

9. The method according to claim 6, wherein z is a one-
dimensional variable g, and g=u”0+r.

10. The method according to claim 4, wherein z is a one-
dimensional variable g, and g=f“¢+w where fis a vector that
contains u, ¢ is a vector that contains 0, and w is a noise value
with variance VUS, and wherein the vector ¢ is non-station-
ary and follows the model ¢,~G ¢ o+v, where G is a matrix, v
is a noise vector with variance VPHI, and 0 is learned with an
algorithm based on Kalman filtering, according to the update
equations

¢ mean = mean
‘predicted ‘previous

covariance covariance 7T,
Ppredicred =GCprevious G +VPHI
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K=Qpaticed ™" R praticed™ ™ FVUS) !

[ predictedmean-"K(g_fT Vpredicied )

covariance—(I_K figp covariance
q)next I K

‘predicted
wherein
predicrea " 18 a predicted mean of state vector ¢ at a certain
time t,
(I)p,edic,e oraranee is a predicted covariance of the state vector

¢ at the time t,,
K is a Kalman gain at the time t,,
enr 18 an updated mean of the state vector ¢ at the time't,,
and
e 474 15 an updated covariance of the state vector ¢ at
the time t,.

11. The method according to claim 1, where the user
adjusts a user control means in order to interpolate between
two different settings.

12. The method according to claim 1, further comprising
classifying the signal features u into a set of predetermined
signal classes with respective classification signal features
u*, and substituting the signal features u with the classifica-
tion signal features u* of the respective class.

13. The method according to claim 12, wherein z is a
variable g, r is a variable r, and g=u*70r.

14. The method according to claim 13, wherein r is a
volume control signal G, (t) provided by the user, u*70 is an
environmental class (evc) dependent gain G, (evc, t), and gis
a resultant volume gain setting, whereby

Grol=G ox )+ Gy (eVC,1).

15. The method according to any of the previous claims,
wherein the measure r of the adjustment is recorded at a time
of explicit dissent.

16. The method according to any of the previous claims,
wherein the measure r of the adjustment is recorded at a time
of explicit consent.

17. A hearing aid with a signal processor that is adapted for
digital signal processing in accordance with the method
according to claim 1.

18. The hearing aid according to claim 17, wherein the
signal processor is further adapted for volume control.

19. The hearing aid according to claim 17, wherein the
signal processor is further adapted for switching between an
omni-directional and a directional microphone characteristic.

20. The hearing aid according to claim 17, wherein the
signal processor is further adapted for automatic selection of
signal processing parameter start values upon turn-on of the
hearing aid.



